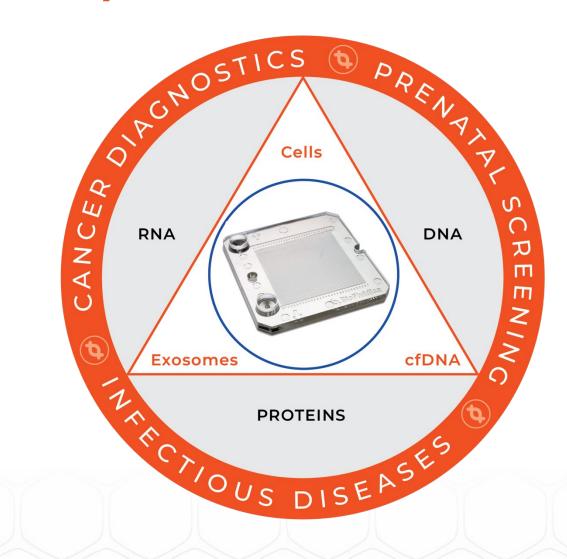


Automated Rare Cell and Exosome Isolation Microfluidic System Accelerates the Development of Liquid Biopsy Clinical Applications

Yipeng Wang, M.D., Ph.D. VP of Translational Medicine

Challenges for Liquid Biopsy

- Disease cells and exosomes are rare
- cfDNA is highly fragmented and diverse among individuals
- Sample collection & transport to maintain cell viability
- Sample preparation and processing lead to biomarker loss



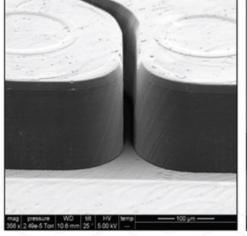
Biofluidica Liquid Biopsy Solution –LiquidScan™

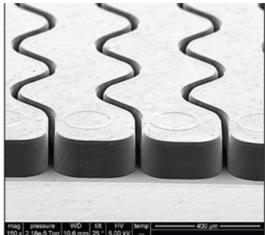
- Proprietary Blood Collection Tubes for room temperature overnight shipments
 - Inhibit micro-clotting; maintain cell viability
- No sample pre-processing
 - LiquidScan provides affinity capture for biomarker isolation and enrichment
 - LiquidScan processes whole blood -for rare cell enrichment
 - LiquidScan processes plasma –for exosome enrichment
- Microfluidic chip biomarker affinity catch-and-release maintains viability
- Completely automated
 - Eliminate hands-on errors and manual variation
 - Precise, accurate, and reproducible
- No tubing or sample valving used during processing
 - Closed loop pipetting system eliminates loss during the processing of sample, capture, and enrichment of biomarkers

bioFluidica

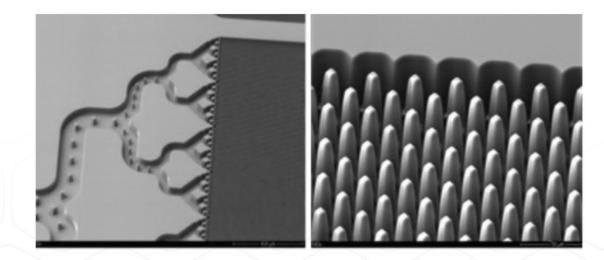
LiquidScan Enables Multi-Omics Analysis

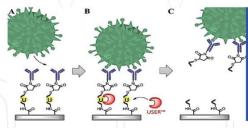
oFluidica

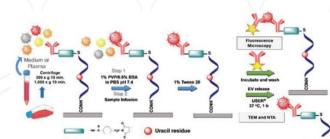

BioFluidica Proprietary Solution


LiquidScan[™] Products for Collection and Processing

- Blood Collection Tube for diagnostic analysis using microfluidics
- Consumable Kits, including specialized microfluidic chips
- Hardware & software for patient sample processing on Hamilton Microlab STAR platforms


RARE BIOMARKER ISOLATION


Specific Isolation of Circulating Cells



Specific Enrichment of Exosome Populations

Any cell with specific cell surface markers can be isolated using LiquidScan.

Exosome surface proteins are used to enrich sub-populations using LiquidScan.

bioFluidica

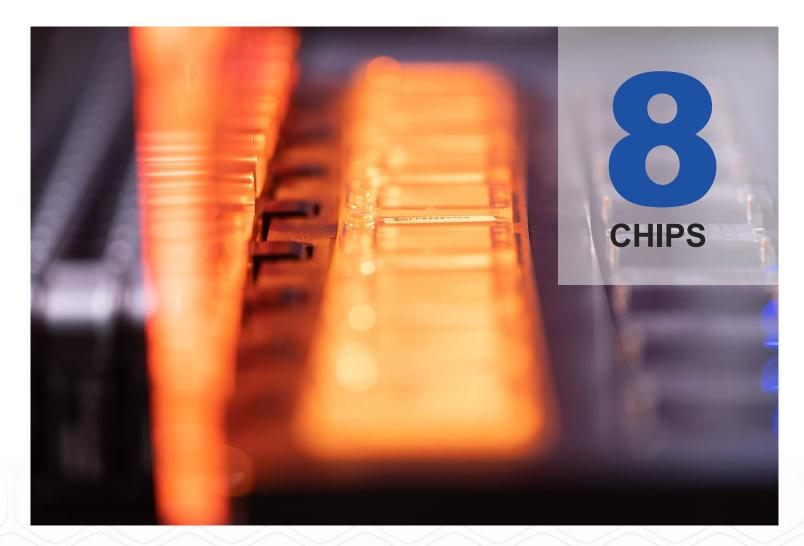
LiquidScan Workflow


Fully automated sample processing for the isolation of rare biomarkers.

Overcoming Biomarker Losses

- ✓ Closed loop pipetting
- ✓ Synergistic activation of 2 pipettes/microfluidic chip

- ✓ Blood tube to chip without biomarker loss
- \checkmark Unlimited scalability



- ✓ Custom software
- ✓ LiquidScan[™] Module
- ✓ Full Automation

Transforming laboratory pipetting robots to closed loop pipetting systems with hardware & software

Full Systems Flexibility to target biomarkers Proprietary Process for rare cells, EVs (exosomes)

Fluidica

- 100ul-4ml per chip
- Speed process time: 2-3hrs dependent on loading volume
- Possible to run 8 patients per run
- From one patient possible to run multiple chips
- 3-4 runs per day per instrument

Easy and Efficient Exosome Isolation with LiquidScan

LiquidScan	Other Technologies	
> 80%	10-90%	
Up to 1 mL/CHIP	NA	
> 80%	5% - 80%	
2-4 hours	15 mins – 16 hours	
2.2 × 10 ¹¹ Particles	NA	
Yes	Yes/No	
	> 80% Up to 1 mL/CHIP > 80% 2-4 hours 2.2×10^{11} Particles	

Clinical Applications

Cell-based Downstream Analysis

- Cytology Analysis
- Enumeration

• ICC

- <u>Molecular Analysis</u>
- qPCR, ddPCR
- 5
- Single Cell Sequencing: mRNA-Seq, ncRNA-Seq, Low pass WGS, Targeted Sequencing, Methylation, Gene Fusion
 - FISH

Exosome Downstream Analysis

Enumeration

- miRNA, mRNA, DNA, Protein
- Biomarker Co-localization

Indications

- Ovarian
- Colorectal
- Endometrial
- Lung
- Pancreatic
- Prostate
- Bladder
- Leiomyosarcoma

- Cholangiocarcinoma
- Multiple Myeloma
- Acute Myeloid Leukemia
- Acute Lymphoblastic Leukemia
- Prenatal
- Stroke
- SARS-CoV-2 Detection

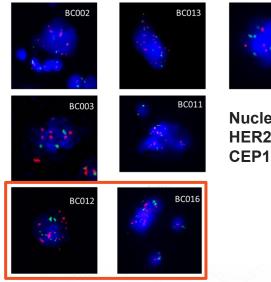
Integrated for Clinical Research

patents, **25** peer-reviewed publications, proven technology

Improved HER2+ Patient Selection with CTCs

Needle biopsy is not always feasible for late stage breast cancer patients Liquid biopsy is an alternative or even better options for the patients

LiquidScan


Non-Invasive Isolation of Circulating Tumor Cells (CTCs) Followed by conventional FISH diagnostics

	Her2 Status			
Patient ID	Needle Biopsy	LiquidScan	Stage	Cellularity
BC002	Her2+	Her2+	Stage 4	Good
BC003	Her2+	Her2+	Stage 3	Excellent
BC011	Her2+	Her2+	Stage 3	Excellent
BC013	Her2+	Her2+	Stage 3	Excellent
BC017	Her2+	Her2+	ND	Scant
BC004	Her2-	Her2-	Stage 4	Good
BC005	Her2-	Her2-	Stage 4	Excellent
BC006	Her2-	Her2-	Stage 3 or 4	Excellent
BC007	Her2-	Her2-	Stage 3	Excellent
BC008	Her2-	Her2-	Stage 4	Excellent
BC009	Her2-	Her2-	Stage 4	Excellent
BC010	Her2-	Her2-	Stage 3	Excellent
BC014	Her2-	Her2-	ND	Excellent
BC015	Her2-	Her2-	ND	Excellent
BC012	Her2-	Her2+	Stage 3	Excellent
BC016	Her2-	Her2+	ND	Excellent

BioFluidica CONFIDENTIAL

Pilot study:

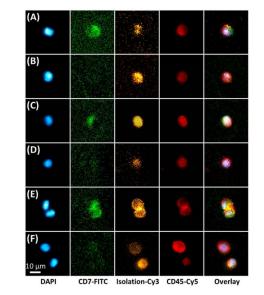
100% in concordance with needle biopsy results In addition: Identification of >25% more patients with Her2+ *Larger Study is in progress

Nucleus: DAPI (Blue) HER2: TRITC (Red) CEP17: FITC (Green)

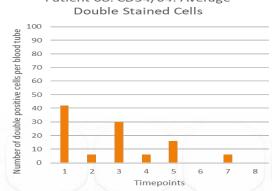
Needle Biopsies are missing patients that can benefit from personalized treatments.

MRD Test for AML

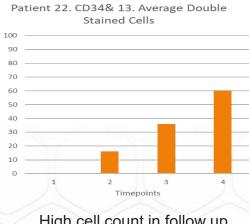
- LiquidScan for AML CLC (Circulating Leukemia Cells) capture was developed and validated
- CLCs were detected for all AML 34 patients in low to mid range categories
- Blood samples were collected monthly for each patient
- Total success rate: 92.3% in concordance with Flow
- Detection of relapse: 83%


Fluidica

Downstream NGS based targeted sequencing for AML panel is under development


Publication:

1. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC4701594/


Immunophenotyping of aberrant(+) CLCs and aberrant(-) cells isolated by targeting (A,B) CD33, (C,D) CD34, and (E,F) CD117, respectively. A

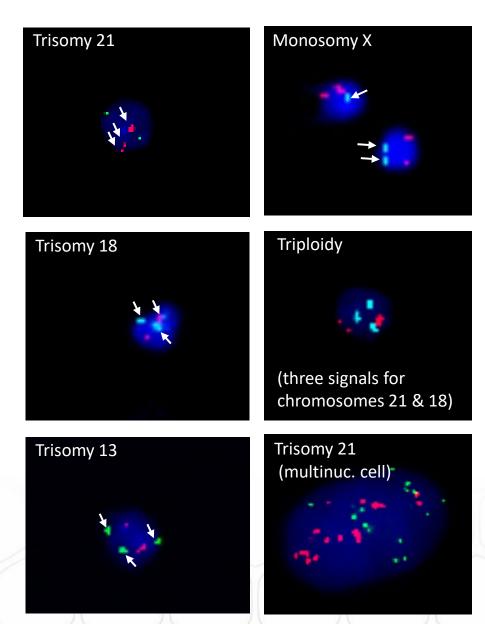
Example: Remission

Example: Relapse

High cell count in follow up samples and uptrend

Patient 08. CD34/64. Average

Low cell count in follow up samples and downtrend

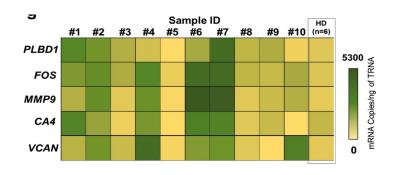

cbNIPT Clinically Feasible with LiquidScan

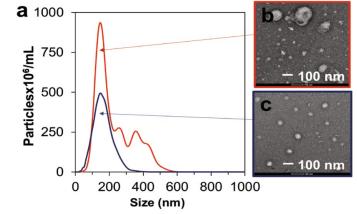
- Cell based NIPT (cbNIPT) has much higher sensitivity and accuracy in CNV detection than NIPT
- Major obstacle of cbNIPT development was to isolate sufficient fetal cell for analysis
- LiquidScan fetal cell CHIP was optimized with 300+ patient samples
- Average number of total fetal cells (mono. + multinucleate): 3.72/mL (74.4/20mL)
- Highest number of CTs reported previously: 0.23/mL (Ref: Panchalee et al. Prenat Diagn, 2020)

Publications:

oFluidica

- 1. <u>https://obgyn.onlinelibrary.wiley.com/doi/10.1002/uog.23</u> 586
- 2. <u>https://obgyn.onlinelibrary.wiley.com/doi/10.1002/pd.604</u> <u>6</u>




Fast Stroke Diagnosis at Point-of-Care

Exosome Based Diagnostics

- Acute ischemic stroke (AIS) patients
- CD8(+) T-cells mRNA biomarkers
- EVs as a source of mRNA for AIS detection
- 80% test positivity
- Samples to results in 3.7 hrs.

Publication: Wijerathne, H., *et al.* Affinity enrichment of extracellular vesicles from plasma reveals mRNA changes associated with acute ischemic stroke. *Commun Biol* **3**, 613 (2020). https://doi.org/10.1038/s42003-020-01336-y

RNA expression profiling for AIS dysregulated genes in clinical samples.

Nanoparticle tracking analysis (NTA) and **b**, **c** TEM images of EVs isolated from clinical sample by **PEG precipitation** and **EV-MAP**

Process flow chart

Contact for more information info@biofluidica.com

LiquidScan[™], a multi-omics Liquid Biopsy platform for improved disease diagnostics

